Skip to main content
Log in

Synthesis of Dimethyl Ether over Modified H-Mordenite Zeolites and Bifunctional Catalysts Composed of Cu/ZnO/ZrO2 and Modified H-Mordenite Zeolite in Slurry Phase

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Synthesis of dimethyl ether (DME) via methanol dehydration were investigated over various catalysts, and via direct CO hydrogenation over hybrid catalysts composed of Al-modified H-Mordenite zeolite and Cu/ZnO/ZrO2. H-Mordenite zeolite exhibited the highest activity in dehydration of methanol. However, its selectivity toward dimethyl ether was rather low. For this reason, the H-Mordenite was modified. Modification of zeolites was performed by wet impregnation method and considered catalysts were characterized by AAS, XRD and NH3-TPD analyses. Results of catalytic tests indicated that H-Mordenite modified with 8 wt% aluminum oxide was the best catalyst for synthesis of dimethyl ether from methanol, in which methanol conversion and DME selectivity were 99.8 and 96.8%, respectively, without noticeable change in catalyst stability. For direct synthesis of dimethyl ether from synthesis gas, hybrid catalysts were prepared by coprecipitation sedimentation method. It was found that optimum ratio of methanol synthesis catalyst to methanol dehydration catalyst is 2:1. In this case, CO conversion and DME selectivity were 64 and 78.8%, respectively, with good catalyst stability. Ultimately, it was concluded that the hybrid catalyst composed of Cu/ZnO/ZrO2 and Al-modified H-Mordenite zeolite is an appropriate catalyst for direct synthesis of dimethyl ether from the synthesis gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HM:

H-Mordenite

DME:

Dimethyl ether

MeOH:

Methanol

References

  1. Kaeding WW, Butter SA (1980) J Catal 61:155

    Article  CAS  Google Scholar 

  2. Cai G, Liu Z, Shi R, He C, Yang L, Sun C, Chang Y (1995) Appl Catal A 125:29

    Article  CAS  Google Scholar 

  3. Shikada T, Fujimoto K, Miyaucki M, Tominaga H (1983) Appl Catal 7:361

    Article  CAS  Google Scholar 

  4. Inoue N, Ohno Y (2001) Petrotech 24:319

    CAS  Google Scholar 

  5. Roh H-S, Jun K-W, Kim J-W, Vishwanathan V (2004) Chem Lett 33:598

    Article  CAS  Google Scholar 

  6. Jun K-W, Lee H-S, Roh H-S, Park S-E (2003) Bull Korean Chem Soc 24:106

    CAS  Google Scholar 

  7. Jun K-W, Rama Rao KS, Jung M-H, Lee K-W (1998) Bull Korean Chem Soc 19:466

    CAS  Google Scholar 

  8. Joo O-S, Jung K-D, Han S-H (2002) Bull Korean Chem Soc 23:1103

    CAS  Google Scholar 

  9. Wang AW, Weigel S, Muraro G (2002) Air Products and Chemicals Inc.

  10. Xu M, Lunsford JH, Goodman DW, Bhattacharyya A (1997) Appl Catal A 149:289

    Article  CAS  Google Scholar 

  11. Fu Y, Hong T, Chen J, Auroux A, Shen J (2005) Thermochim Acta 434:22

    Article  CAS  Google Scholar 

  12. Kim SD, Baek SC, Lee YJ, Jun KW, Kim MJ, Yoo IS (2006) Appl Catal A 309:139

    Article  CAS  Google Scholar 

  13. Jiang S, Hwang YK, Jhung SH, Chang JS, Hwang JS, Cai TX (2004) Chem Lett 33:1048

    Article  CAS  Google Scholar 

  14. Jiang S, Hwang JS, Jin TH, Cai TX, Baek WYS, Park SE (2004) Bull Korean Chem Soc 25:185

    CAS  Google Scholar 

  15. Shen WJ, Jun K-W, Choi H-S, Lee K-W (2000) Bull Korean Chem Soc 17:210

    Article  CAS  Google Scholar 

  16. Tao JL, Jun K-W, Lee K-W (2001) Appl Organometal Chem 15:105

    Article  CAS  Google Scholar 

  17. Jun K-W, Lee H-S, Roh H-S, Park S-E (2002) Bull Korean Chem Soc 23:803

    Article  CAS  Google Scholar 

  18. Satterfield CN (1993) Heterogeneous catalysis and industrial practice, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  19. Yaripour F, Baghaei F, Schmidt I, Perregaard J (2005) Catal Commun 6:542

    Article  CAS  Google Scholar 

  20. Brown DM, Bhatt BL, Hsiung TH (1991) Catal Today 8:279

    Article  CAS  Google Scholar 

  21. Fei JH, Yang MX, Hou ZY, Zheng XM (2004) Energy Fuels 18:1584

    Article  CAS  Google Scholar 

  22. Qi GX, Zheng XM, Fei JH, Hou ZY (2001) J Mol Catal A 176:195

    Article  CAS  Google Scholar 

  23. Takeguchi T, Yanagisawa K, Inui T, Inoue M (2000) Appl Catal A 192:201

    Article  CAS  Google Scholar 

  24. Li JL, Zhang XG, Inui T (1996) Appl Catal A 147:23

    Article  CAS  Google Scholar 

  25. Ge Q, Huang Y, Qiu F, Li S (1998) Appl Catal A 167:23

    Article  CAS  Google Scholar 

  26. Xia J, Mao D, Zhang B, Chen Q, Tang Y (2004) Catal Lett 98:235

    Article  CAS  Google Scholar 

  27. Ramos FS, Duarte de Farias AM, Borges LEP, Monteiro JL, Fraga MA, Sousa-Aguiar EF, Appel LG (2005) Catal Today 101:39

    Article  CAS  Google Scholar 

  28. Jun KW, Lee HS, Roh HS, Park SE (2003) Bull Korean Chem Soc 24:104

    Google Scholar 

  29. Li J-L, Zhang X-G, Inui T (1997) Appl Catal A 164:303

    Article  CAS  Google Scholar 

  30. Rhodes MD, Pokrovski KA, Bell AT (2005) J Catal 233:210

    Article  CAS  Google Scholar 

  31. Rhodes MD, Bell AT (2005) J Catal 233:198

    Article  CAS  Google Scholar 

  32. Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F (2007) J Catal 249:183

    Article  CAS  Google Scholar 

  33. Liu J, Shi J, He D, Zhang Q, Wu X, Liang Y, Zhu Q (2001) Appl Catal A Gen 218:113

    Article  CAS  Google Scholar 

  34. Suh YW, Moon SH, Rhee HK (2000) Catal Today 63:447

    Article  CAS  Google Scholar 

  35. Sun K, Lu W, Qiu F, Liu S, Xu X (2003) Appl Catal A Gen 252:243

    Article  CAS  Google Scholar 

  36. Campelo JM, Lafont F, Marinas JM, Ojeda M (2000) Appl Catal A 192:85–96

    Article  CAS  Google Scholar 

  37. Cimadevilla JLG, Alvarez R, Pis JJ (2003) Vib Spectrosc 31:133–139

    Article  CAS  Google Scholar 

  38. Dumitriu E, Hulea V (2003) J Catal 218:249

    Article  CAS  Google Scholar 

  39. Anand R, Maheswari R, Gore KU, Khaire SS, Chumbhale VR (2003) Appl Catal A 249:265

    Article  CAS  Google Scholar 

  40. Arena F, Dario R, Parmaliana A (1998) Appl Catal A 170:127

    Article  CAS  Google Scholar 

  41. Mao D, Yang W, Xia J, Zhang B, Song Q, Chen Q (2005) J Catal 230:140

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support by the Petrochemical Research and Technology Company is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazemeini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khandan, N., Kazemeini, M. & Aghaziarati, M. Synthesis of Dimethyl Ether over Modified H-Mordenite Zeolites and Bifunctional Catalysts Composed of Cu/ZnO/ZrO2 and Modified H-Mordenite Zeolite in Slurry Phase. Catal Lett 129, 111–118 (2009). https://doi.org/10.1007/s10562-008-9779-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9779-8

Keywords

Navigation